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ABSTRACT

Exact formulas are derived for the upper and lower limits of the amplitude of the input

reflection coefficient of an arbitrary two-port, in the presence of mismatched source and

load andlor indefinite reference planes. The derivation is based on certain properties of

the bilinear transformation. -

Introduction

It was shown by Bandler, Liu and Trompl

that, in the realistic worst-case tolerance
analysis of microwave two-ports, the effect
of a mismatched source and load should not be
neglected, as compared with the effect of
physical tolerances and model uncertainties.
~x~licit formulas were derived for the extrema

of the modulus of the input reflection coeffi- 17g.1. Tw-part with mismatched source and bad

cient of a lossless two-port, referred to W %. .
real normalisation impedances. In this paper,

we intend to generalise these formulas. We
will consider the situation de~icted in

fig. 1. The S-matrix of the two-port is refer-
red to Zf and Z’.
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Source and load impedances

‘s
and Z L are represented by their reflection

coefficients, Ps and pLl W.r.ta ‘1 and ‘2 ‘re-
spectively. Zi and Z; may be complex. Let
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= Ipslej$s , pL= lPL\eJ@L (1)

We assume @s, @L arbitrary, and IPSI, IPLI

either given, or limited by

This corresponds to the realistic situation,

where only a (maximum) VSWR is specified fc
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Fig.2. Twv-gwrt with arbitrary rdkrence planes

$1 and @2 also.

The expressions to be derived are useful for

worst-case analysis and fit into the general
formulation of the tolerance problem, as given

by Tromp2. They also give the possibility,

when performing a tolerance optimization
(see e.g. 1,3-s) to compromise between the tole-

rances within the network (i.e. its cost) and
the quality of source and load. To a certain
extent t’ney can be used to design subnetworks
of a large network separately. Finally, they
offer an alternative for the study of the sta-
biiity of a two-port under various conditions

of source and load, as well as various posi-
tions of input and output reference planes.

Bilinear transformations

Consider the transformation (wrz,arb,c,d

complex)
az+b

w = czi-d
(6)

This well-known bilinear transformation was~

among others, studied by Deschamps6’7 and is

known to transform circies into circles.
Without loss of generality, we can consider

Another situation which shall be dealt with is
w = Re]$, O < @ & 27.

shown in fig. 2, where the lengths of the Then
connecting lines at input and output (given by
phase-angles $1 and $2) are arbitrary. We Z=z +rej@, O<Q

shall consider only real Zi, Z; in this case.
o

with
Again, expressions for the limits (4)-(5) will

be derived, but now with the extrema taken over Z. =
R2c*d-a*b

la12-R21c12 ‘ ‘=
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Then

lzMl=N~x 121= Izol+r (9)

lZml=M$ IZI =Ilzol-rl (lo)

One can prove that IZMI and Izml, as functions

of R, behave as follows : ]ZMI increases to
mfor R< l-ja and decreases for R > 1:1, while

1%1 decrea~ s toO for R < b and increases

If we lel!2F!J

for R > z

< R < R+, then

[IzM(R+)I if R+ < 1~1

t

lzl+=~: Izl= cc if R-<l~l<R+

IZM(R-)l if R- > 1:I
(11)

1lzl-=Mi; Izl= O if R-<l~l<R+

lzm(R-) I if R- > 1~1
. ,,

(12)

Two special cases of (9) and (10) are of in-

terest

1) If arg a + arg d = arg b + arg c + IT, then

\zMl= M IW-FI, ,Zml=b-Rb (13)

2) If arg a + arg d = arg b + arg d, then the
value of IZM / and Izm ] is given by Table 1,

where

I ‘M 1 ‘B ‘A I ‘A ‘B I
Iz

m I ‘A ‘B I ‘B ‘A I
Table 1

‘M
and z m when arg a + arg d = arg b + arg c

IZAI =
lbl-Rldll lbl+Rldl

la\-Rjcl ‘ IZBI = ,.31+RIcI
(14)

(15)

We consider also the transformation

z=
wkdh-~h

a-we
(16)

which does not transform circles into circles,

but gives the same Izl as (6). This means
that all results, (9) to (15) also apply for
(16), which we therefore call the pseudo-

-bilinear transformation.

Effect of mismatches

In fig. 1, we have

Ipinl . A
1-PPS

(17)

with

z. -Zl
~– in

z +2; (18)
in

We can now use (16) , to find the extrema of

Ipinl, for allPS, and either for a given P ,

or for I PI between upper and lower limits.

P depends only on P , which means that IPI can

$be forced to its ex reme values, independently

Ofp.
Inde~d, _ a p+b

P~ C P+d
(19)

with

a=(l+S;lAl) (l+S.j2A2) - S~2S~1A1A2 (20).-

b=-(A;+S;l) (1+s;2A2) + S;2S;1A2 (21)

c=(l+SilAl) (A~+s~2) - St s? A
12 21 1

(22)

d=-(A~+Sil) (A~+S~2) + Si2S~1 (23)

~ ~l,s’ =Y*SSil=y*S
22 2 22 ‘

Si2S~1=y*y*S
1 2 12s21

(24)

2:*+2: Z;-Z*
1

Yi=~l Ai ‘~ ‘ i = 1’2
(25)

Ii i

(19) is a bilinear transformation and (9) to

(12) give the limits of Ipl, for all pL.
Finallyr we find

K+(IPM],I PSI) if lP14[ <1 -S
&

K-(\ PMl, [PSl) if IPMI < fi< 1

orif 1< lpM] <
l-$-r

lpinl~ = (26)
< 1< Ipm[K+(l Pml, lPSl) if~..

‘-(lam’’’ p)’) ‘f #J< lpm~ < 1

orifl< ~< lPml
s

‘x if Ipml <b< IPD*I
<

and similar expressions for lPi~ ~, With !PMI,

lPm] according to (9) and (lo).

Also

lPinl+ =

K+(

K- (

co

Pi+,

P]+,

Psi+) if IPL

and Ipl+<

PJ+) if

either

orl<

and similar expressions for 1P inl-, with IPl+
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and \p\- accordinq to (11) and (12) (with

R- = O, R+ = IPLI+). We defined
Xl+x

2
K+ (x1,x2)= 1+x1X2 ‘ K-(x1,x2)= K+ (X1,-x2)

(28

Indefinite reference planes

Consider fig. 2, with Z, and Z: real. Let
P’ be the reflection co&fficie&t of Z; w.r.t
Z?, and p; this of z ~ w.r.t Z;. Then

We can use (9) to (12) to find the extrema of

Ip;l over all ps. The same can be done at

the load. A situation similar to that of the

preceding paragraph arises and similar formu-

las are found.

Lossless two-port

If Z! = Z. (real) and if the network is loss-
less~spec%al case 2) is found and the formulas
are considerably simplified. If 2S and ZL are

passive, the formulas derived inl are found.

Example

As an example, we consider the transistor
HP 35821E (bias IC = 15mA, VCE = 15V). Fig$ 3
gives the limits of Ip inl” lPj- l~and-l Pinl
coincide, as well as 1P in\man~ Ipinl . The

two-port remains stable. Fig. 4 illustrates
the effect of indefinite reference planes.
The two-port remains stable. In some cases
however, the two-port becomes unstable when
the reference planes are made arbitrary. The
results were confirmed by a Monte Carlo

analysis.

Conclusion

Exact, explicit formulas were derived for the

limits of the input reflection coefficient

of an arbitrary two-port, under various condi-

tions of source and load. They can easily
be implemented in a computer program.

1

2

3

4

5

References

J.W. Bandler, P.C. Liu and H. Tromp, “In-
tegrated approach to microwave design”,
IEEE Trans. Microwave Theory Techn. ,
vol. MTT-24, Sept. 1976, pp. 584-591.

H. Tromp, “The generalized tolerance problem

and wor;t case search”, Proc. Conf. o~

Computer Aided Design of Electronic,
Microwave Circuits and Systems, Hull,

England, July 1977, pp. 72-77.

J.W. Bandlerr P.C. Liu and H. Tromp, “A non-

linear programming approach to optimal
design centering, tolerancing and tuning”,
IEEE Trans. Circuits and Systems, vol. CAS-23,
March 1976, Dp. 155-165.

J.F. Pinel and K.A. Roberts, “Tolerance
assignment in linear networks usinq nonlinear
prog~amming”, IEEE Trans. Circuit ‘Theory,

vol. CT-19, Sept. 1972, pp. 475-479.

J.W. Bandler, P.C. Liu and J.H.K. Chen, “

“Worst case network tolerance optimization”,

6

7

m

(250

025

0.0

IP,”I

[%IM = [Pin[ +
b

a

1%1[----------- ____ - ---------
~ -- -- -- --

b

c [Pin[m = Ipinl -

1 2 3 4 f(GHz)

Fig.3. Input reflection coefficient of 35821 E,with

(pJ+=lpLl+= Q2 and a)Zl =Z~.50

b)Z1 =50+ i25j, 22 .49-2j,

Zj=&5+5j, Z; .55-7j

IIpinl

o.75-. b

[Pinl+ a

l%]------------- -----------

CfiO “
----

lPin[-
~

oz5- / +

f(GHz)

1 2 3 4 5

fig.4. Input reflection coefficient of 35821E,with

lP#lPL~~2> 21’50, Z~=~5,Z2=49,Z;=55

a) fixed reference @anes

b) indefinite retkrence planes

IEEE Trans. Microwave Theory Techn., vol.
MTT-23, Aug. 197 5, PP. 630-641.

G.A. Deschamps, “Geometric viewpoints in

the representation of waveguides and
waveguide junctions”, Proc. Symp. on Noderz
Network Synthesisr New York, Sept. 1952,

PP - 277-295

G.A. Deschamps, “!iew chart for the solution

of transmission-line and. polarisation
problems”, Trans. IRE Microwave :h:;ry
Techn.r vol. 1, March 1953, PP. - .

84


