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ABSTRACT

Exact formulas are derived for the upper and lower limits of the amplitude of the input
reflection coefficient of an arbitrary two-port, in the presence of mismatched source and

load and/or indefinite reference planes.
the bilinear transformation.

Introduction

It was shown by Bandler, Liu and Tromp1
that, in the realistic worst-case tolerance
analysis of microwave two-ports, the effect
of a mismatched source and load should not be
neglected, as compared with the effect of
physical tolerances and model uncertainties.
Explicit formulas were derived for the extrema
of the modulus of the input reflection coeffi-
cient of a lossless two-port, referred to
real normalisation impedances. In this paper,
we intend to generalise these formulas. We
will consider the situation devicted in
fig. 1. The S-matrix of the two-port is refer-
red to Z! and Zé. Source and load impedances
ZS and ZL are represented by their reflection
coefficients, pg and p;, w.r.t. Z, and Z, res-
pectively. Zi and Zi may be complex. Let

jog o,
ps = lpsle ’

o = logle (1)

We assume ¢, ¢, arbitrary, and |pS|, [pLI
either given, or limited by

+ +
O < logl < logl + O < lopl < |pgl (2)

This corresponds to the realistic situation,
where only a (maximum) VSWR is specified for
source and load. We are interested in the in-
put reflection coefficient,

%, -2%

in 7S

in Zin+ZS
and we shall derive expressions for

(3)
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Another situation which shall be dealt with is

The derivation is based on certain properties of

bs
Z 1z 27 S
Pin
Zin
Figl. Two-port with mismatched source and load
b 7]
4, 44 s %L 5 3y

s ZPin
fs
Fig.2. Two-port with arbitrary reference planes

by and o also.

The expressions to be derived are useful for
worst—case analysis and fit into the general
formulation of the tolerance problem, as given
by Tromp?. They also give the possibility,
when performing a tolerance optimization

(see e.g. ¥"5) to compromise between the tole-
rances within the network (i.e. its cost) and
the quality of source and load. To a certain
extent they can be used to design subnetworks
of a large network separately. Finally, they
offer an alternative for the study of the sta-
biiity of a two-port under various conditions
of source and load, as well as various posi-
tions of input and output reference planes.

Bilinear transformations

Consider the transformation (w,z,a,b,c,d

complex) az+b

" cz+d

(6)

This well-known bilinear transformation was,
among others, studied by Deschamps®’7? and is
known to transform circles into circles.

Without loss of generality, we can consider

rRe’l?, 0 < ¢ < 27m.

shown in fig. 2, where the lengths of the ¥th
connecting lines at input and output (given by io
phase-angles ¢, and ¢,) are arbitrary. We z=z, ,+re » 05 0 g 27 (7)
shall consider only real Z., Z! in this case. with
Again, expressions for the limits (4)-(5) will 2 k. * _
be derived, but now with the extrema taken over zy = B_EEQ_%_E_E r = R ag bg 5 (8)
la]“-R%|c] [la]l“-r%|c|”]
*Part of this work was supported by a grant of
the NFWO (Belgian National Research Fund)
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Then

2| = Max |z] = |z | + ¢ ®
|z, | = Min |z | =llzg| - ] (10)
One can prove that |z, | and |zm|, as functions
of R, behave as follows |z increases to
o for R ¢ éiand decreases for R > [i', while
|z | decreasés to O for R g ’g! and increases

for R > ig’:

If we let R < R g R+, then

2y ®) ir =Y < 2]
Iz " = Max |z | =4 o if R < [Bl<rY
¢, R ¢
|ZM(R_)| if R > ’%l
) (11)
Wzm(R+)] if RT < ‘g
z|” = Min |z]| =¢ O if R” < RlsrT
¢, R d
r - -
2, (RT) | if R > lg
i (12)

Two special cases of (9) and (10) are of in-
terest

1) If arg a + arg d = arg b + arg ¢ + m, then
_ | bl]+r]a _ |lo]-rla '
2y | = ENREICERN 2 | = BEIE (13)

2) If arg a + arg d arg b + arg d, then the
value of IzMI and |zm| is given by Table 1,

where
I b d b d
Bl < I¢] 2] > ¢
R « RO R > RO R <« RO R > RO
Zy Zn Zp Zp zg
%n Zp Zg Zg Zp
Table 1
Zy and Z., when arg a + arg d = arg b + arg c
b]—Rldl’ Ibl+ral
Z = ' b4 = | (14)
2l = aryerlr 1%l = ljapRpe
and
_\/jap
Ry = lcd’ (15)
We consider also the transformation
*_
_ wXd*-b* (16)
a-wac

which does not transform circles into circles,
but gives the same |z]| as (6). This means
that all results, (9) to (15) also apply for
(16) , which we therefore call the pseudo-
-bilinear transformation.

Effect of mismatches

In fig. 1, we have _ %
P=Pg

lognl (17)

1=ppg
with
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...Zl

e
Zin zl
We can now use (16), to find the extrema of
Ipin , for all DS, and either for a given p,
or for |p| between upper and lower limits

p depends only on p., which means that |¢| can
be forced to its ex%reme values, independently

p = (18)

.

of ps.
Indeéd, _ap+b (19)
L c p+d
with
— - [} 1]
a_(l+si1A1)(l+SéZA2) 512521A1A2 (20)
— * Y ' ' vA
b==(81+5])) (1+55,8,) + 8],87,4, (21)
= ! A* 1 - t 1
e=(1+87,8) (A5+S5,) = 81,8518 (22)
* * [] ¥y
A==(A7%87,) (03+875) + 81557 (23)
. ok e . R
8117181175227 2822+ 8125577172525, (24)
zi*+z§ zi—zz
Yi T Zrz, 0 b1 T ey, o 1= 1.2 (25)
a 1 1 1
(19) is a bilinear transformation and (9) to

(12) give the limits of |[p],

for all Pr,.
Finally, we find

+ 1
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- R 1
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1
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losnlm =] 1 (28)
if 1
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- . 1
’ f | €1
K (Ipm| IDSI) i Togl < oyl <
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R - 1
e if ol < TogT < oyl

.

and similar expressions for lpiJ m’ with an],

]pm[ according to (9) and (10).
Also
K (o™ logl™ if o |t < %'
and |p|+ <1 g TElT;
S
- + +, +
K (Jo] slogl™) if |op | < %' and
]pin|+ = either [p|+ < pl el S N
5 @n
st < i
S
. +
© if Je | > l%'
or oIt > 2
” psl"'

.

and similar expressions for ,pinl—’ with |O|+



and |p|~ acconinq to (11) and (12) (with

R™ = 0, RY = |pp|+). We defined

N X, +x _ N

K (%) ,%,)= m—l-x—z r K(x),%5)= K (%,,7%,)
(28)

Undefinite reference planes

Consider fig. 2, with 2, and 2! real. Let

Pl be the reflection coefficieiit of Zé w.r.t

Zl’ and pg this of ZS w.r.t Zi. Then

logl = logl ana . pL+b, )

S 1+D5A1

We can use (9) to (12) to find the extrema of
]pé' over all pg. The same can be done at
the load. A situation similar to that of the
preceding paragraph arises and similar formu-
las are found.

Lossless two-port

If z! = Z. (real) and if the network is loss-
less,special case 2) is found and the formulas
are considerably simplified. If Z, and Z. are
passive, the formulas derived in! Tare found.

Example

As an example, we consider the transistor

HP 35821E (bias I, = 15mA, VC = 15V). Fig+ 3

gives the limits &f |pin|- ey IM and_|p, |

coincide, as well as |p, and [e, | . "The
in'm in

two-port remains stable. Fig. 4 illustrates
the effect of undefinite reference planes.
The two-port remains stable. In some cases
however, the two-port becomes unstable when
the reference planes are made arbitrary. The
results were confirmed by a Monte Carlo
analysis.

Conclusion

Exact, explicit formulas were derived for the
limits of the input reflection coefficient

of an arbitrary two-port, under various condi-
tions of source and load. They can easily

be implemented in a computer program.
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